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Abstract

Associated to a directed graphG and a sequence representing net flows at the vertices ofGwe can define
a polytope whose points correspond to flows through the directed edges of G. The family of polytopes
obtained in this way are called flow polytopes and are the subject of recent study. Stanley-Postnikov and
Mézsáros-Morales-Striker proposed a procedure to construct different subdivisions of a flow polytope.
For net-flow sequence (1, 0, . . . , 0) any such subdivision happens to be a triangulation. We study the
dual graphs of such triangulations for a particular family of graphs known as Caracol graphs, previously
studied by Benedetti et al., and whose associated flow polytopes have normalized volumes given by the
Catalan numbers. We show that the dual graph of one of the triangulations happens to be the 1-skeleton
of the simplicial associahedron and another one is a toggle graph that is obtained by flip operations on
the set of Dyck paths.
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1
Introduction

Let G be a directed graph with vertex set [n + 1] ∶= {1, 2, . . . , n + 1} and a set of directed edges E ⊆[n+1]×[n+1], and let−→a = (a1, a2, . . . , an) ∈ Zn be an integer tuple. Theflow polytopeFG(−→a ) is the
set of points inRE that correspond to flows through the edges ofG andwhere (a1, a2, . . . , an,−∑n

i=1 ai)
represents the net flow on the vertices ofG. This family of polytopes is the subject of study in the present
work and have received a lot of attention inmultiple research areas as optimization (see for example [19]),
geometry (see [12]), algebra (see [14]) and combinatorics (see [7, 15]) because of its interesting properties.
In particular, in combinatorics there has been relevant recent work of Baldoni and Vergne [2], Mészaros
andMorales [16], Benedetti et al. [3] and unpublished work of Postnikov and Stanley, that has revitalize
this area of study.
From the combinatorial and geometric point of view, one interesting problem is to compute the volume
of FG(−→a ) for a suitable graph G and a net flow vector −→a . An interesting case is when G = Kn+1 (the
complete graph with edges (i, j) whenever i < j) and −→a = (1, 0, . . . , 0). It was conjectured by Chan,
Robbins and Yuen in [6] and proved by Zeilberger in[24] that the normalized volume

Vol(FKn+1(1, 0, . . . , 0)) = C1 ⋅ C2 ⋅ ⋯ ⋅ Cn−2, (1.1)

where Cn denotes the n-th Catalan number. Zeilberger proof is algebraic and is based on the constant
term of a power series identity. The polytopeFKn+1(1, 0, . . . , 0) is known in the literature as the CRYn
polytope after the authors of the original conjecture. It is of current interest in the community to find a
combinatorial explanation of the appearance of the product of Catalan numbers, since Catalan numbers
have plenty of interesting combinatorial interpretations.
One possible approach to find a combinatorial interpretation of the volume of the CRYn polytope is to
consider families of simpler graphs that can shed some light on the underlying combinatorialmechanisms
of the problem. One such graph that has received enough attention has been coinedwith the name of the
Caracol graph Carn by Benedetti et al. in [3]. Stanley (unpublished), Benedetti et al.[3] andMészaros et
al.[17] proved that

Vol(FCarn(1, 0, . . . , 0)) = Cn−2, (1.2)

1



the final term of the product formula (1.1) for the CRYn polytope.
One technique to prove formulas like (1.1) and (1.2) is to use what is known as a triangulation, where
the polytope is subdivided in smaller pieces, known as simplices, each of normalized volume equal to 1.
Then we are just left with the problem of counting the number of simplices of the triangulation to be
able to determine the volume of the whole polytope. Postnikov and Stanley introduced (unpublished)
a family of triangulations for flow polytopes that were developed further and formalized in an article by
Mészáros andMorales [16].
Since the family of Catalan objects is rich in combinatorial properties, formula (1.2) suggest that addi-
tional structure can be revealed on Catalan objects by studying the triangulations that give rise to such
formula. In particular, given a triangulation of a polytope one can define an (undirected) graph whose
vertices are the maximal simplices or facets in the triangulation and where there is an edge between any
two facets that intersect maximally. This graph is called the dual graph of the triangulation.
In this work we study the subdivision mechanism described in [17] to build triangulations of the Cara-
col polytope FCarn(1, 0, . . . , 0). We refer to these triangulations as totally reductive Postnikov-Stanley
(TRPS) triangulations. They are obtained by making reductions at every vertex of a framed graph. The
concept of a framed graph was defined by Danilov, Karzanov, and Koshevoy, in [8] as a graph together
with a pair of linear orderings on the sets of incoming and outgoing edges at each vertex, which is called
a framing. Based on the fact that different framings potentially give different triangulations and with
the help of some computations in the free open-source mathematics software system SageMath (which
provided us with examples on how these triangulations behave) we discovered relations between the dual
graphs of two particular triangulations and known graphs related to Catalan objects.
An interesting family of combinatorial objects that encode geometric information are the tubings on
a connected graph G = (V,E) that were defined by Carr and Devadoss in [4]. These are collections
of subsets T ⊂ V such that the induced graph GT is connected (also known as tubes) and satisfying a
compatibility condition. It is known that the set of maximal tubings on a line graph Ln is a family of
Catalan objects and that they are also the set of facets of a simplicial complex (known as the nested set
complex) constructed out of the information enconded on tubings. The dual graph of this particular,
nested set complex for the line graph is known to coincide with the 1-skeleton of a very famous polytope
known as the associahedron or the Stasheff polytope (see [9, 10, 11, 18]). We prove then the following
theorem.
Theorem (4.9). The dual graph of the backward TRPS triangulation of the Caracol flow polytope
FCarn(1, 0, . . . , 0) given by the lex-revlex ordering as framing on the edges is the 1-skeleton of the(n − 3)-associahedron.
We prove Theorem 4.9 by finding a bijection between a set of paths on the Caracol graph Carn (which
correspond to vertices of FCarn(1, 0, . . . , 0)) and tubes of the line graph Ln−2. This bijection maps col-
lections of paths satisfying a compatibility condition to tubings.
Another family of very popular Catalan objects is the set of Dyck pathsDn. Dyck paths are lattice paths
from (0, 0) to (n, n)using (0, 1) (NorNorth) and (1, 0) (E or East) steps such that the path does not go
below the line y = x. One can construct a graph that relates pairs of these paths whenever one is obtained
from the other by making a valid switch of consecutive stepsNE to EN. This graph is called the Toggle
graph on the set of Dyck paths. We prove the following theorem.
Theorem (4.10). The dual graph of the backward TRPS triangulation of the Caracol flow polytope
FCarn(1, 0, . . . , 0) given by the planar ordering as framing on the edges is the toggle graph Toggn−2 on
the set of Dyck paths Dn−2.
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The results in [17] imply that there is an integral equivalence between a flow polytope of a planar graph
G (together with its planar embedding) and an order polytope on a poset PG on vertices of the dual graph
ofG. Order polytopes are a family of polytopes associated to posets that were studied by Stanley in [21].
Stanley defined a triangulation called the canonical triangulation whose simplices correspond to linear
extensions of the associated poset P. We prove Theorem 4.10 using a bijection between the set of linear
extensions of the poset PCarn and the set of Dyck pathsDn−2.
This thesis is organized as follows: On Chapter 2 we provide some background and notions on graphs,
polytopes, triangulations and Catalan combinatorics. On Chapter 3 we give the definition of a flow
polytope and given some examples. We also describe the subdivision technique in [17] and describe an
algorithm to obtain such a subdivision. We call this theMMS algorithm. On Chapter 4 we prove The-
orems 4.9 and 4.10. On appendix A we provide the SageMath code used to visualize and conjecture the
results presented in this work.
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(...) and thus we have the anomaly of themost rigidly exact
in science applied to the shadow and spirituality of themost
intangible in speculation.

Edgar Allan Poe

2
Preliminaries

2.1 Polytopes and graphs

Most of us are familiar with the idea of a polygon. We can think of a polygon as a flat figure bounded
by edges as Figure 2.1a. As we know from school, polygons live in the plane and that implies that their
dimension is two. However, we can think about how these kind of bounded figures will look-like in
more general spaces. In the three dimensional space we can take as an example the Platonic solids, that
we know of from our geometry course at school. One of them is the cube that is illustrated in Figure
2.1b. Concepts and definitions in this section will follow closely the book of Ziegler [25] and we invite
the reader to consult it for undefined terms.

(a)Hexagon. (b) Cube. (c)Hypercube.

Figure 2.1: Examples of polytopes.

We know from euclidean geometry that the n-dimensional space can be separated in two halfspaces by
a hyperplane, that is an affine subspace of dimension n − 1. In a two dimensional space a hyperplane
is a straight line and for three dimensions it is a plane (see Figure 2.2). Figures as the showed above can
be described in different ways. The two more common descriptions are, referring to them either as the
smallest convex region of space that contains a given set of points, or as the intersection of selected half
spaces.
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(a) A line separating a two dimensional space. (b) A plane separating a three dimensional space.

Figure 2.2: The corresponding hyperplanes for two and three dimensional spaces.

The spaces that we are referring to are the n dimensional spaces Rn which consists of all the tuples(x1, . . . , xn) where each xi ∈ R. These tuples are a way to represent a point in Rn and every xi rep-
resents the ith coordinate of that point. An affine subspace ofRn is a subspace ofRn that has been shifted
by a translation. The affine hull of a set of points P is the intersection of all affine subspaces that contain
P. The convex hull of a set of points P is the smallest convex set containing P, that is, the intersection of
all convex sets that contain P. Note that, in particular, the convex hull of P is a subset of its affine hull. If
P = {−→a1, . . . ,−→ak} ⊆ Rd, its convex hull can be expressed algebraically as

conv(P) = {λ1−→a1 + ⋅ ⋅ ⋅ + λk−→ak
»»»»»» k

∑
i=1

λi = 1 and λi ≥ 0} .

With these facts in mind, we can give two different (but equivalent) definitions of a polytope.
An H-polytope is an intersection of finitely many closed halfspaces in Rn that is bounded in the sense
that it does not contain a ray {−→x + t−→y ∶ t > 0} for any −→y ≠ 0. A V -polytope is the convex hull of a
finite set of points inRn. In Figure 2.3 we illustrate the same polytope according to both definitions.

(a) V-polytope. (b)H-polytope.

Figure 2.3: Two ways of defining a polytope.

Theorem2.1 (Minkowsky-Weyl’sTheorem). Calledmain theoremforpolytopes in the book ofZiegler[25].
A subset P ⊆ Rd is the convex hull of a finite point set (a V -polytope)

P = conv(V) for some V ∈ Rd×n
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if and only if it is a bounded intersection of halfspaces (anH-polytope)

P = P(A, z) for some A ∈ Rm×d , z ∈ Rm

According to Theorem 2.1 we can give the following definition.

Definition 1 (Polytope). A polytope is a subset P ⊆ Rn which can be presented either as a V -polytope or
as anH-polytope.

The (intrinsic) dimension of a polytope is the dimension of its affine hull. A d-polytope is a polytope
of dimension d in Rn with d ≤ n, where n is said to be the dimension of the ambient space. We have
then that 0-polytopes are points, 1-polytopes are line segments, 2-polytopes are polygons, 3-polytopes
are three dimensional solids like the cube, 4-polytopes are figures like the hypercube in Figure 2.1c and so
forth.

Remark. If in the definition of anH-polytope we remove the condition of being bounded, we obtain amore
general family of objects known as polyhedra.

A d-polytope P is said to be integral if all its vertices have integer coordinates. The normalized volume of
an integral polytope is defined to be d! ⋅ VP, whereVP is its euclidean volume.

2.2 Triangulations of a polytope and the dual graph

In two dimensions the simplest 2-polytope we can think of is a triangle (see Figure 2.4a). A triangle is
the convex hull of three points in general position (not colinear). If we move to three dimensions, the
analogue of a triangle is the tetrahedron (see Figure 2.4b). Nowwe want to consider their d-dimensional
generalizations. A d-simplex is a polytope of dimension dwith d + 1 vertices.

(a) Triangle. (b) Tetrahedron.

Figure 2.4: Simplices for two and three dimensions.

The unitary d-simplex is defined as Δd = {(a1, . . . , ad) ∈ Rd »»»»»»∑d
i=0 ai ≤ 1 and ai ≥ 0}. We can see

from this definition that Δd = conv({−→0 , e1, . . . , ed}), that is, the convex hull of the origin (zero vector)
and the canonical basis of Rd, see the examples in Figure 2.4. Note that since the volume of Δd is 1

d! its
normalized volume is 1 for every d.
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(a) The triangle with vertices (0, 0), (1, 0) and(0, 1).

z

y

x

(b) The tetrahedron with vertices(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).
Figure 2.5: The simplices Δ2 and Δ3 in their respective ambient spaces.

Definition 2 (Triangulation of a polytope). If we consider a polygon, we can obtain a subdivision of
it into triangles that use the vertices of the polygon (see Figure 2.6a), this is called a triangulation of the
polygon. Generalizing that fact to a d-dimensional polytopes we say that a triangulation of a d-polytope is a
subdivision in which every part is a d-simplex whose vertices are vertices of the original polytope.

(a) A triangulation of the hexagon. (b) A triangulation of the cube.

Figure 2.6: Examples of triangulations of the polytopes in Figure 2.1.

Graphs are mathematical structures used to abstract or resume information of pairwise relations, like
friendships in a social network, computers connected in a network, transportation routes between cities
and many other examples. Graphs are formally defined as follows.
A (simple) graph is an ordered pairG = (V,E)whereV is a set (of vertices) and E ⊆ {{x, y} ⊆ V ∣ x, y ∈
V} (is the set of edges). A directed graph is a graph where each edge carries a direction. For example, a
family of directed graphs in which we are interested are the Caracol graphs, see Figure 4.1a.
A path on a graph is a sequence of different edges e1, . . . , en with ek = {xk, yk} in which yk = xk+1 for
k ∈ [n − 1]. We say that the path is between the vertices v and w (and call them the initial and final
vertices of the path) when v = x1 and w = yn. A cycle (or closed path) over the graph is a path from a
vertex to itself, in other words a path in which v = w. A connected graph is a graph in which there is a
path between every two vertices.

Definition 3. Every triangulation of a polytope induces a graph called the dual graph of the triangulation.
The vertices of this dual graph correspond to the parts in the triangulation and there is an edge whenever two
parts intersect maximally, that is, if two simplices in the triangulation share a common face of maximal
dimension. For the example triangulations in Figure 2.6 the dual graphs are shown below.
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(a)Dual graph of the triangulation of the
hexagon in Figure 2.6a.

(b)Dual graph of the triangulation of the cube in
Figure 2.6b.

Figure 2.7: Examples of dual graphs associated to the triangulations in Figure 2.6.

2.3 Catalan combinatorics

TheCatalannumbers (denotedbyCn) are a frequently foundnumber sequence inmathematics, specially
in enumerative combinatorics. First appearances in publishedworks date from the 1730’s andwe canfind
it as the sequence A000108 in OEIS (The Online Encyclopedia of Integer Sequences [20]). An explicit
formula for these numbers is given by

Cn = (2nn ) 1

n + 1
.

2.3.1 Combinatorial interpretations

Stanley [22] has curated a list of more than 200 different combinatorial interpretations for the Catalan
numbers. We show some of these families in this section.

Triangulations of a regular (n + 2)-gon
It is a classic result that the number of triangulations of a regular (n + 2)-gon (see Definition 2) is given
by the Catalan number Cn (see Figure 2.8).

Figure 2.8: Examples of the different triangulations for polygons with 3, 4, 5 and 6 vertices.

8
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Dyck paths

ADyck path of length 2n is a lattice path in Z2 from (0, 0) to (n, n) with north stepsN ∶= (0, 1) and
east steps E ∶= (1, 0) such that it never crosses down the axis x = y. The set of all Dyck paths of length
2n is denoted byDn and it have size Cn.

Figure 2.9: Examples ofDn for n = 1, 2, 3 and 4.

Tubings

The following construction is based on Carr and Devadoss [4]. Let G = (V,E) be a simple graph. For
a set T ⊆ V the induced subgraph by T (denoted byGT) is the graph whose edges are in ES = {{vi, vj} ∈
E ∣ vi, vj ∈ T}. A tube of G is a subset T ⊂ V such that the induced subgraph GT is connected. For two
different tubesT andW ofGwe say that they are compatible if one of the following conditions is satisfied:

• If T ∩W ≠ ∅ then T ⊂ W orW ⊂ T.

• If T ∩W = ∅ then T ∪W ⊂ V and it is not a tube.

A tubing T ofG is a family of tubes ofG such that every pair of tubes is compatible. We say that a tubing
T ismaximal if for every tube T ofG that is not in T the set T ∪ {T} is not a tubing. In other words, if
T ∉ T then T is not compatible with some of the tubes inT.
The n-line graph Ln is the graph whose edges are defined by {(i, i+ 1)with 1 ≤ i ≤ n− 1}. It is known
that the number of maximal tubings of Ln is given byCn (see [11]). In Figure 2.10 we have illustrated the
maximal tubings of L1, L2, L3 and L4.

Figure 2.10: Tubings of line graphs L1, L2, L3 and L4.
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2.3.2 Two graphs on the set of Catalan objects

Toggle graph on the set of Dyck paths

We consider the following graph Toggn on the set of Dyck pathsDn. Given a Dyck pathD ∈ Dn we call
a switch to the change between a consecutive sequence of steps EN andNE whenever we obtain a valid
Dyck pathD′ ∈ Dn. We call such a switch a toggle operation that obtainsD′ fromD and wheneverD and
D′ are related by a toggle operation we obtain an edge (D,D′) in Toggn. The graph Toggn is called the
Toggle graph onDn (see Figure 2.11 for an example).

Figure 2.11: Toggle graph Togg3 onD3.

The associahedron and the Tamari graph

The associahedronKn (also known as Stasheff polytope) is an n-dimensional convex polytope studied in
combinatorics and algebra (see [1] and [13]). This polytope has interesting properties and different but
equivalent representations. The number of vertices of this polytope is given by theCatalan numberCn+1.
One of the multiple ways of constructing the associahedron is given by tubings of line graphs. The
1-skeleton of the associahedron Kn matches with the graph whose vertices are maximal tubings of Ln+1
and where there is an edge between two tubings T andS if they differ just in one tube. If we talk about
posets, this graph is also known as the Hasse diagram of the Tamari lattice.

(a) The three dimensional associahedronK3. (b) 1-Skeleton of the 2-associahedronK2

constructed with tubings of L3

Figure 2.12: The associahedronK3 and the 1-Skeleton ofK2.

If the readerwants to know somemore about this polytopewe invite to see [18] and thework ofDevadoss
[4, 9, 10, 11] and Ceballos et al. [5].
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Home is behind, the world ahead, and there are many
paths to tread through shadows to the edge of night, until
the stars are all alight.

J. R. R. Tolkien

3
Triangulations of flow polytopes

3.1 Flow polytopes

Flow polytopes are a family of polytopes that have been studied in combinatorics and geometry bymany
mathematicians. There has been work of Baldoni and Vergne [2] and unpublished work of Postnikov
and Stanley. According to literature (more preciselly in Meszáros et al. [17] and Benedetti et al. [3]) a
flow polytope is defined as follows.

Definition 4 (Flow polytope). Let G = (V,E) a connected graph with V = [n+ 1]where every element
of E is directed from the smallest vertex to the largest. Let m denote the number of edges of G. Given such
a graph and a vector −→a = (a1, . . . , an) ∈ Zn an −→a -flow on G is a tuple (xi,j)(i,j)∈E of real numbers (i.e.(xi,j) ∈ Rm) such that for j ∈ [n]

∑(j,k)∈E xjk − ∑(i,j)∈E xi,j = aj (3.1)

One can view an −→a -flow as an assignment of flow bi,j to each edge (i, j) such that the net flow at vertex j is
aj and such that the net flow at vertex n + 1 is −∑n

j=1 aj. Define FG(−→a ) to be the set of all −→a -flows of G
with non-negative entries. Hence, we also have that, in addition to Equation (3.1), the elements ofFG(−→a )
satisfy the inequalities

xi,j ≥ 0 for all (i, j) ∈ E. (3.2)

Because of Equations (3.1)and (3.2)we have thatFG(−→a ) is anH-polytope andhence a polytope inRm. This
polytope is called the flow polytope of G with net flow −→a . Sometimes we will refer to G as the flow graph
associated to the polytopeFG(−→a ) and to the vertices 1 and n + 1 as the source and sink of G respectively.

To show how to obtain a polytope from a graphwe have the following example. Consider the flow graph
showed in the Figure 3.1a.
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1 1 −2

x1,2

x1,3

x2,3

(a) Flow graphG.
1 1 −2

0.3

0.7

1.3

(b) Example of flow overG.

Figure 3.1: Example of a flow graphG and some−→a -flow over it.

We can view each edge (i, j) as a variable xi,j and we have to make sure that the equations with the form
of the Equation (3.1) are satisfied for every vertex in [n]. Those equations are

x1,2 + x1,3 = a1
x2,3 − x1,2 = a2.

Note that the net flow in this case is−→a = (1, 1), so we obtain the equations
x1,2 + x1,3 = 1

x2,3 − x1,2 = 1.

The above equations have to be satisfied at the same time, this means that we are looking for the inter-
section of the hyperplanes defined by each of them. In addition, since the−→a -flows inFG(−→a ) have only
non-negative entries, we are just considering the segment that lives in the first octant ofR3 (i.e. the section
in which x1,2 ≥ 0, x1,3 ≥ 0 and x2,3 ≥ 0) see the following figure.

x1,2

x1,3

x2,3

(0, 1, 1)

(a) FG(−→a ) of the graphG in Figure 3.1a.

x1,2

x1,3

x2,3

(0 3 0.7, 1.3)

(b) Point corresponding to the flow in Figure 3.1b.

Figure 3.2: Flow polytopeFG(−→a ) of the example graphG in Figure 3.1.

Remark. Note that with the above example one can realize that every flow over a graph G correspond to a
point on their flow polytopeFG(−→a ).
3.2 Totally reductive Postnikov-Stanley triangulations

Mezsáros, Morales and Striker [17] proposed a procedure to construct different subdivisions of a flow
polytope, named framed Postnikov-Stanley triangulations, because they are based on previous unpub-
lished work of Postnikov and Stanley.
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Definition 5. Aweak composition of n in k parts is a vector (a1, . . . , ak) inwhich every ai is a non-negative
integer and∑k

i=1 ai = n. The set of all those compositions is denoted byWCOMP(n, k).
Definition 6. A bipartite graph is a graph in which the set of vertices V can be written as the union of two
disjoint sets V1 and V2 with the condition that there is no edges of the form (v,w) where v and w are either
both in V1 or both in V2. We call V1 and V2 the sets of left and right vertices respectively.

Definition 7. A tree is a simple connected acyclic graph. A bipartite noncrossing tree is a tree with left
vertices l1, . . . , li and right vertices r1, . . . , ro with no pair of edges (ln, rp) and (lm, rq) where n < m
and p > q. The set of such bipartite noncrossing trees is denoted T (I,O) where I = (l1, . . . , li) and
O = (r1, . . . , ro).
As it is explained in [17], the bipartite noncrossing trees are in bijection with weak compositions of o− 1
into i parts. The bijection is given by sending a tree T ∈ T (I,O) to a composition (a1, . . . , ai) where
the integer ak denote the outgoing edges minus 1 at vertex lk, see Figure 3.3.

l1

l2

l3

r1

r2

r3

r4

1

2

0

Figure 3.3: Bipartite noncrossing tree associated to the weak composition (1, 2, 0).
Definition 8. (Danilov et al. [8]) For an inner vertex v of a flow graph G (a vertex different to the source
and sink) a framing at v is a pair of linear orders (≺I, ≺O) over the incoming and outgoing edges of v
respectively. If there is a framing at every inner vertex, G is called a framed graph.

LetG be a framed graph with verticesV = [n+ 1] and let Ii andOi denote the sets of incoming and out-
going edges at vertex i, respectively (ordered according the framing ofG). Consider a treeT ∈ T (Ii,Oi),
for each edge (el, er) of T where el = (i, j) ∈ Ii and er = (j, k) ∈ Oi let el + er denote an edge of the
form (i, k)which we call the sum of edges el and er. For the sums of edges of the form (i, j)+ (j, k), that
actually correspond to paths from i to k passing by j, we will use [i, j, k] notation.
Let G(i)

T , with T ∈ T (Ii,Oi), be the graph obtained by removing the vertex i and all the edges of G that
include it and adding the set of edges {el + er∣(el, er) edge of T}. A reduction of G at the vertex i with
respect of T replaces G by the graphs G(i)

T corresponding to each T ∈ T (Ii,Oi), keeping which sum of
edges ofG is each edge of each new graph.
The framing ofG(i)

T is inherited from the framing ofG as follows:

(i) For each vertex j smaller than i the incoming edges Ij(G(i)
T ) are in bijection with Ij(G). These

edges are ordered in the same way as they are ordered in Ij(G).
(ii) For each vertex j greater than i the outgoing edges Oj(G(i)

T ) are in bijection with Oj(G). These
edges are ordered in the same way as they are ordered inOj(G).
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(iii) For each vertex j smaller than i consider the setOj(G) = {a1, . . . , ak} ordered linearly according
to the framing of G. Since the edges in Oj(G(i)

T ) are sums (probably empty) of edges of G with
an edge ofOj(G) thus denote by S(al), with l ∈ [k], to the set of those edges that were summed
to the edge al. Then let any edge in S(ap) be less that any edge in s(aq) for p < q. To specify the
ordering of the edges within the sets S(al), the case where S(al) = {al} is already ordered. Now
if S(al) ≠ {al} then draw Twith the left and right sets of vertices ordered vertically following the
framing ofG. The edges in S(al) are ordered following the order on the edges of the noncrossing
bipartite tree Twhen viewed from top to bottom (smallest edge to largest).

(iv) For each vertex j greater than i the set Ij(G(i)
T ) inherit the framing ofG analogously to (iii).

We call a total reduction of a framed graph G to make reductions on every inner vertex recursively, i.e.
make a reduction ofG at vertex i and then make reductions of the graphsG(i)

T for every T ∈ T (Ii,Oi) at
a different vertex j and so on until reductions have beenmade at all inner vertices ofG. We call a backward
total reduction of G to a total reduction make in sequence from the vertex n to the vertex 2. The set of
all those graphs obtained after a total reduction is what we know as a totally reductive Postnikov-Stanley
(TRPS) triangulationofG (backwardTRPS triangulation in the case of a backward total reduction). The
graphs in the TRPS triangulation are called simplices, since their respective flow polytopes are integrally
equivalent to simplices ofFG(−→a ).

x1,2 x2,3 x3,4

x1,3

x1,2

x2,4

x2,3 + x3,4

x1,3 + x3,4

x1,3 + x3,4

x1,2 + x2,4

x1,2 + x2,3 + x3,4

x1,3

x2,3

x1,2

x3,4

x2,4

x2,3 + x3,4

x1,2
+ x2,4

x
1,2 + x

2,3 + x
3,4

x
1,3 + x

3,4

x2,3
+ x3,4

G
(2)
T2

G
(3)
T1

G

T1

T2

x2,4

Figure 3.4: Mészáros-Morales-Striker algorithm example applied on a graphG.

Wewill refer to the entire process toobtain aTRPS triangulation as theMészáros-Morales-Striker (MMS)
Algorithm and for one step of the respective total reduction wewill say that it is an iteration of theMMS
algorithm, see Figure 3.4 for an example. For net flow vector −→a = (1, 0, . . . , 0) any subdivision of the
mentioned above happens to be a (geometric) triangulation of the flow polytopeFG(−→a ).
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How puzzling all these changes are! I’m never sure what
I’m going to be, from one minute to another.

Lewis Carroll

4
Dual graphs of some triangulations

of the Caracol flow polytope

Benedetti et al. [3] studied a particular family of flow graphs that they called the Caracol graph (because
of its similarity in shape with a snail, see Figure 4.1a), denoted byCarn for every integer n. This graph has
n+ 1 vertices and directed edges of the form (1, i), (i, i+ 1) and (i, n+ 1) for each i = 2, . . . , n. Some
readers can be see this graph as some type of merge of two Pitman-Stanley graphs (see Figure 4.1b).

1 2 3 4
· · ·

n− 1 n n+ 1

(a) Caracol graph with n + 1 vertices.

1 2 3 4
· · ·

n− 1 n n+ 1

(b) Pitman- Stanley graph with n vertices.

Figure 4.1: Comparison between Carn and PitSn graphs.

According to the description of Carn is natural to think about its associated flow polytopes. When we
consider FCarn(−→a ) where −→a = (1, 0, . . . , 0) the authors in [3, 17] give two different proofs of the fol-
lowing result.

Theorem 4.1 ([3, 17]). The normalized volume ofFCarn(1, 0, . . . , 0) is Cn−2, the n−2Catalan number.
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1 0 0 0 0 −1

x1,2 x2,3 x3,4 x4,5 x5,6

x1,3

x1,4

x1,5

x2,6

x3,6

x4,6

Figure 4.2: The Caracol graph Car5 with net-flow (1, 0, . . . , 0).
4.1 TRPS triangulations with lex-revlex ordering

Given the resultsmentioned above is natural to think about further relations betweenCatalan objects and
theCaracol polytopes. Wewill showcharacterizations of twoTRPS triangulations of theFCarn(1, 0, . . . ,
0) polytope and its dual graphs in terms of known combinatorial objects in the Catalan family.
Recall that in the context of the flow polytope FCarn(1, 0, . . . , 0) we have a bijection between vertices
of the polytope and complete directed paths between the vertex 1 and the vertex n + 1. So we will talk
indistinctively about the vertices of a simplex in a triangulation of the polytope and a directed path from
1 to n + 1.
The lex-revlex (lexicographical-reverse lexicographical) ordering on the set of edges of a graphG consist of
a linear order in which for a pair of edges (i, j), (k, l) we have (i, j) ≺ (k, l) if i < k or i = k and j > l.
This ordering turnsG to a framed graph (since is a total order in the set of the edges ofG) with the order
restricted to the edges at every inner vertex as framing.

Lemma 4.2. In Carn, with the lex-revlex ordering as framing on its edges, when we are applying theMMS
algorithmwith a backward total reduction at vertex k we have that the ordering on the collection of outgoing
paths is given by {(k, n+ 1), [k, k+ 1,P1], [k, k+ 1,P2], . . . , [k, k+ 1,PS], [k, k+ 1,⋯, n, n+ 1]}.
Where P1, . . . , PS is the ordering on the edges (paths) that were incident to the edge (k, k+ 1) according to
the noncrossing bipartite tree chosen in the previous step at vertex k + 1.

...

(1, k)

(k − 1, k)

(k, n+ 1)

[k, k + 1, P1]

[k, k + 1, P2]

[k, k + 1, PS]

[k, k + 1, · · · , n, n+ 1]

k

Continuing
edge

Escape
edge

Figure 4.3: Graphic description of the behavior of theMMS algorithm at vertex k.

See in Figure 4.3 that in the left hand the lex-revlex ordering is maintained since the smallest edge (1, k)
is on top and the largest (k − 1, k) is below it. We will call the edges at the left as the escape edge and the
continuing edge respectively, because the paths that connects with the first one end in that step, and the
paths that connects with the other one continue in the next iteration of the algorithm.
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Corollary 4.3. The paths of the form [1, k, n + 1] for k = 2, . . . , n and the path [1, 2, . . . , n, n + 1]
appear as vertices in every simplex in the backward TRPS triangulation. Such paths will be called as the
fixed paths of the triangulation.

Proof. This follows from the fact that in a noncrossing bipartite tree, because of the lex-revlex ordering,
the escape edge must always be connected to the edge (k, n+ 1) and the continuing edge must always be
connected to the path [k, k + 1, . . . , n, n + 1] creating the complete path from 1 to n + 1.

We note here that any other path that is not fixed, according to the definition in Corollary 4.3, is of the
form [1, k, . . . , k + i, n + 1] for some k ≥ 2 and i ≥ 1.

Proposition4.4. Inany simplex in the backwardTRPS triangulation of theCaracolflowpolytopeFCarn(1,
0, . . . , 0) with the lex-revlex ordering as framing, for every pair of edge-paths [1, k, . . . , k+ i, n+ 1] and[1, l, . . . , l + j, n + 1] where k < l ≤ k + i does not happen that k + i < l + j.

Proof. Suppose that we apply the MMS algorithm to the graph Carn within the lex-revlex ordering
as framing in every vertex and in some of the simplices we have a pair of edge-paths p = [1, k, . . . ,
k+ i, n+ 1] and q = [1, l, . . . , l+ j, n+ 1] in which k ≤ l ≤ k+ i < l+ j, see Figure 4.5. Then in the
iteration at vertex k+ i of theMMS algorithm, according to Lemma 4.2, the edge (k+ i, n+ 1) comes
before the path q′ = [k+ i, k+ i+ 1, . . . , l+ j, n+ 1] (see Figure 4.4a). From the framing inheritance
paths continuing both of these paths will preserve the ordering, so for the unique path from the vertex l
to k + i, [l, . . . , k + i, n + 1] < [l, . . . , k + i, . . . , l + j, n + 1].

(1, k + i)

(k + i− 1, k + i)

(k + i, n+ 1)
...

[k + i, k + i+ 1, . . . , l + j, n+ 1]

[k + i, k + i+ 1, . . . , n+ 1]

...

(a) Tree for vertex k + i.

(1, l)

(l − 1, l)

(l, n+ 1)

[l, . . . , k + i, . . . , l + j, n+ 1]

[l, l + 1, . . . , n+ 1]

[l, . . . , k + i, n+ 1]

...

...

...

(b) Tree for vertex l.

Figure 4.4: Bipartite noncrossing tree representations for the proof of the Proposition 4.4.

Now in theMMS algorithmon vertex lwehave that [l, . . . , k+i, . . . , l+j, n+1]must connectwith the
escape edge and [l, . . . , k+ i, n+1]must connect with the continuing edge in the noncrossing bipartite
tree but this is not possible since this will cause a crossing in the tree, see Figure 4.4b.

l n+ 1

. . . . . .
1 k

. . . l + jk + i

Figure 4.5: Pair of paths [1, k, . . . , k + i, n + 1] and [1, l, . . . , l + j, n + 1]with k ≤ l ≤ k + i < l + j.

Corollary 4.5. In the MMS algorithm with a backward total reduction of the Caracol flow polytope, for
two paths p = [l, . . . , r, n+1] and q = [l, . . . , s, n+1] if l < r < s then p < q and p appears first (above)
in the bipartite noncrossing tree representation.
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Definition 9. Consider any two nonfixed paths (vertices ofFCarn(1, 0, . . . , 0)) p = [1, k, . . . , k+i, n+1]
and q = [1, l, . . . , l + j, n + 1] with k ≤ l. After Proposition 4.4 we will say that p and q are coherent if
either k + i < l or, if l ≤ k + i, it does not happen that k + i < l + j. We will also say that a collection of
nonfixed paths such that are pairwise coherent is called a coherent collection of paths. A coherent collection
P such that for any path p ∉ P the condition of being coherent is no longer fulfilled byP ∪ {p} is called a
maximal collection of paths.

The two situations where two nonfixed paths are coherent are represented in Figure 4.6.

1 k l n+ 1

. . . . . .. . .

l + j

k + i

(a) Coherence when l + j ≤ k + i.

1 k n+ 1l
. . . . . . . . .k + i l + j

(b) Coherence when k + i < l.

Figure 4.6: Representation of a coherent pair of paths in a simplex.

Proposition 4.6. For a coherent collectionP of nonfixed paths on Carn there exists a simplex, in the back-
ward TRPS triangulation ofFCarn(1, 0, . . . , 0) with the lex-revlex ordering as framing, that contains all
elements ofP as vertices.

Proof. We will show that in the MMS algorithm there exists a sequence of bipartite noncrossing trees
Tn,Tn−1, . . . ,T2 where each Ti is chosen at vertex i and that ensures that the paths in P will be vertices
in some simplex of theTRPS triangulation. According to theMMS algorithm this can be interpreted as
for each vertex iwe can find a tree Ti such that the paths that pass through i and continue are connected
with the continuing edge (i − 1, i) and the paths that escape at vertex i are connected with the escape
edge (1, i).
Suppose that in some vertex swith 2 < s < n is not possible to construct the tree Ts with the mentioned
conditions. That means that there exist two different paths p = [1, k, . . . , s, . . . , k + i, n + 1] and
q = [1, l, . . . , s, . . . , l + j, n + 1] in P with k + i < l + j (this by corollary 4.5 implies that we have
p < q) such that in the bipartite noncrossing tree Ts we have that the tail [s, . . . , k + i, n + 1] of pmust
be connected to the continuing edge (s − 1, s) and the tail [s, . . . , l + j, n + 1] of qmust be connected
to the escape edge (1, s). If this were to be true, in particular we would have that l = s since q escapes
at s, k < s since p continues at s, and so k < l = s < k + i. However this is will imply by because this
would imply according to Proposition 4.4 andDefinition 9 that the paths p and q are not coherent. This
is a contradiction with the hypothesis that P is a collection of coherent paths. We conclude then that it
is possible to have such a sequence of bipartite noncrossing trees that ensures that the paths inP will be
vertices in some simplex of the TRPS triangulation.

As a consequence of Corollary 4.3, and Propositions 4.4 and 4.6, we can conclude the following propo-
sition.

Proposition 4.7. In the backward TRPS triangulation ofFCarn(1, 0, . . . , 0)with the lex-revlex ordering
as framing, simplices are in bijection with maximal collection of coherent nonfixed paths. Furthermore, the
collection of vertices of any simplex is the union of the collection of fixed paths and a maximal collection of
coherent nonfixed paths.
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After Proposition 4.7 we can characterize the simplices in our triangulation by maximal collections of
coherent nonfixed paths. We will turn into a more natural device in the family of Catalan objects that
will be useful to characterize these simplices.
Let PCarn denote the set of all nonfixed paths on Carn and TLn−2 the set of tubes of the line graph Ln−2.
We can define a function

φ ∶ PCarn ⟶ TLn−2.

Consider the set of edges E = {(i, i + 1) ∣ 2 ≤ i ≤ n − 1} of Carn, since the size of that set is n − 2
each edge (i, i+ 1) can be associated to the vertex vi−1 of Ln−2. In this way the path from 1 to n+ 1 that
pass through consecutive edges ofEwill be sent to the tube that contains exactly the vertices associated to
those edges. More precisely the tube {vi−1, . . . , vi+j−1} of Ln−2 will be the image through φ of the path[1, i, . . . , i + j, i + j + 1, n + 1], see Figure 4.7. Observe that φ is clearly a bijective function.

v1 vn−2
⇒

vi−1 vi+j−1

· · · · · ·· · ·· · ·· · ·

1 2 i i+ j + 1 n n+ 1
· · ·

ϕ

Figure 4.7: Correspondence between tubes and paths.

Proposition 4.8. The function φ induces a bijection between the sets of coherent collections of nonfixed paths
on the Caracol graph Carn and tubings of the line graph Ln−2.

Proof. We already know that tubes of Ln−2 correspond to paths onCarn, we are left to show that p and q
are two coherent nonfixed paths in Carn if and only if φ(p) and φ(q) are two compatible tubes of Ln−2.
If p and q are coherent then they are in any of the two situations that appear in Figure 4.6. In the situation
in 4.6a we have that φ(p) and φ(q) are nested. In the situation in 4.6b we have that φ(p) and φ(q) does
not intersect and they are separated at least one vertex. This is exactly the definition of compatibility of
tubes given in Section 2.3.

Theorem4.9. Thedual graph of the backwardTRPS triangulation of theCaracolflowpolytopeFCarn(1, 0,
. . . , 0) given by the lex-revlex ordering as framing on the edges is the 1-skeleton of the (n−3)-associahedron.
Proof. The maximal collections of coherent nonfixed paths characterize the simplices in our triangula-
tion ofFCarn(1, 0, . . . , 0) and are in bijection to maximal tubings of Ln−2. We are left to prove that the
respective geometric simplices connect in the same way that their corresponding set of maximal tubings
do. Recall that in the dual graph of the triangulation adjacency of simplices is given by the intersection
in maximal facets. This is equivalent as saying that two simplices are adjacent if they differ by exactly one
vertex. In the language of tubings this is equivalent to say that they are adjacent if they differ by exactly
one tube. This corresponds with the characterization of the 1-skeleton of the (n−3)-associahedron that
we gave in Section 2.3.2.
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(a) Tubings of a 3-line graph. (b) Paths on the Caracol graph Car5.

Figure 4.8: Example of the correspondence between the construction of the 1-skeleton of the associahedron using tubings
and the dual graph of our triangulation.

4.2 Order polytopes and TRPS triangulations with planar ordering

Stanley [21] studied a family of polytopes called order polytopeswhich are polytopes associated to partially
ordered sets (posets). We first present results of Mezaros et. al [17], Postnikov (unpublished) and Stanley
[21] that relate flow and order polytopes.

Definition 10 (Order polytope). Let P be a poset with elements {t1, . . . , tn}, the order polytopeO(P) is
the set of points (x1, . . . , xn) ofRn that satisfies 0 ≤ xi ≤ 1 and if ti ≤P tj then xi ≤ xj for any i, j =∈ [n].
We can identify each point (x1, . . . , xn) ofO(P)with amonotone function f ∶ P → R in which f(ti) = xi,
whereR is considered with its natural total order.

A planar graph is a graph G that has a planar embedding, i.e. it can be drawn without edges crossing.
For our purposes our planar graphs will have an embedding satisfying that if i < j, and vertex i is in the
position (xi, yi) and vertex j is in the position (xj, yj) in the plane, then xi < xj.
The dual graph of a connected planar graph is a graph whose vertices correspond to the faces of G (the
regions delimited by its edges) and it has an edge if two faces are separated by an edge. The truncated dual
graph, denoted G∗, is the dual graph of G removing the vertex corresponding to the exterior or infinity
face, this graph can be seen as a dual graph for some polytope subdivision in which the polytope is the
polygon delimited byG. The orientation of the edges ofG give us an orientation of the edges of its dual
G∗ from lower to higher y coordinates what allows us to consider that graph as the Hasse diagram of a
poset denoted PG, see Figure 4.9a for an example.
Let P be a finite poset and define the poset P̂ by adding a maximum and a minimum element, denoted
1̂ and 0̂ respectively, see Figure 4.9b. P is called a strongly planar poset if the Hasse diagram of P̂ has a
planar embedding with y coordinates respecting the order of the poset. For example, the poset defined
by the relations a < c, a < d, b < c and b < d is planar but not strongly planar.
Mészáros-Morales-Striker in [17], followingunpublishedworkofPostnikovonflowandorder polytopes,
proved that ifG is a planar graph then the flow polytopeFG is integrally equivalent to the order polytope
O(PG). Conversely ifP is a strongly planar poset then the order polytopeO(P) is integrally equivalent to
the flowpolytopeFGP whereGP is the truncateddual graphof theHasse diagramofPwith two additional
edges between 0̂ and 1̂ one to each side.
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For a poset P = {t1, . . . , tn} a linear extension of P is a tuple (ta1 , . . . , tan) such that whenever tai < taj
in P then we have ai < aj. Stanley in [21] showed that there exists a triangulation whose simplices are in
bijection to the linear extensions of the associated poset.

G
∗

G

(a) A graphG and its truncated dualG∗.

1̂

0̂

P̂G

PG

(b) The poset PG with added 1̂ and 0̂.

Figure 4.9: Example of truncated dual graph and its associated poset (lattice).

Definition 11 (Canonical triangulation of an order polytope [21]). Fora linear extension (ta1 , . . . , tan)
of a poset P, define the simplex

Δta1 ,...,tan ∶= {(x1, . . . , xn) ∈ [0, 1]n ∣ xa1 ≤ ⋯ ≤ xan}
Note that the n+1 vertices of this simplex are 0, 1 vectors whose 0 coordinates are indexed by length k prefixes
ta1 , . . . , tak of the linear extension for k ∈ [n]. The simplicesΔta1 ,...,tan corresponding to all linear extensions
of P are top dimensional simplices in a triangulation ofO(P) that is called the canonical triangulation of
O(P). In this triangulation two simplices Δta1 ,...,tan and Δtb1 ,...,tbn intersect maximally if there is an index
i such that ai and ai+1 are not comparable in P, and bi = ai+1, bi+1 = ai and bj = aj for any other j. In this
case we will say that the two linear extensions (ta1 , . . . , tan) and (tb1 , . . . , tbn) are adjacent.
In Mészáros et al.[17] they prove that a TRPS triangulation of the flow polytope FG is closely relate to
the Stanley canonical triangulation of the corresponding order polytopeO(PG). More precisely one can
obtain a triangulation integrally equivalent to this canonical triangulation using a planar framing in the
MMS algorithm for the TRPS triangulation. Based on that results we can present another TRPS trian-
gulation of the Caracol flow polytopeFCarn(1, 0, . . . , 0) that corresponds to the canonical triangulation
of the order polytope O(PCarn) associated to the Caracol graph. Note that the representation that we
have used for the Caracol graph Carn makes evident the fact that it is planar.
As we said, the simplices of the canonical triangulation of an order polytope correspond to linear exten-
sions of its associated poset. In the case of the Caracol Carn the form of PCarn (see Figure 4.10) allows us
to relate the linear extensions of that poset with Dyck paths.

Figure 4.10: Hasse diagram of the poset PCar5 associated to the flow graph Car5.
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TheHasse diagram of the poset PCarn can be seen as two parallel rows. Let us denote the elements of this
poset then as iN or iE if the element is either the i-th element from bottom to top in the lower row or in
the higher row respectively, see Figure 4.10 for an example. Note that the order relation in PCarn is then
given by iN < jN or iE < jEwhenever i < j and iN < jEwhenever i ≤ j. We can associate the lower row
with north (N ) steps and the higher to east (E) steps in a lattice path. In this way we associate to a linear
extension of PCarn a lattice path in Z2 from (0, 0) to (n − 2, n − 2) (since there are n − 2 elements in
each row). Note that, since iN < jEwhenever i ≤ j in PCarn , if an element jE comes in a linear extension
before iN thenwemust have j < iwhich implies that for any linear extension (t1, t2, . . . , t2(n−2)) and for
every 1 ≤ k ≤ 2(n − 2) the number of elements in (t1, t2, . . . , tk) from the lower row must be at least
the same number of elements from the higher row. This precisely corresponds to the path being a Dyck
path inDn−2, see Figure 4.11 for an example.
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Figure 4.11: Example of how to obtain a Dyck path from a linear extension of PCar4 .

Theorem 4.10. The dual graph of the backward TRPS triangulation of the Caracol flow polytope
FCarn(1, 0, . . . , 0) given by the planar ordering as framing on the edges is the toggle graph Toggn−2 on
the set of Dyck paths Dn−2.
Proof. We know that linear extensions correspond to simplices in the triangulation. In order to know
how these simplices are connected in the dual graph we can use the notion of adjacency of linear exten-
sions given in Definition 11. Two linear extensions are adjacent if they differ only in a pair of consecutive
elements that are not comparable in PCarn and that appear switched between the two linear extensions.
Let (t1, t2, . . . , t2(n−2)) be a linear extension of PCarn . For an index i the following cases can occur for the
pair (ti, ti−1):

1. Case (ti, ti−1) = (iN, jN) or (ti, ti−1) = (iE, jE). In this case it must happen that i < j and the
elements ti and ti−1 are comparable and cannot be switched.

2. Case (ti, ti−1) = (iE, jN). In this case it must happen that i < j and the elements ti and ti−1 are
not comparable and can be switched.

3. Case (ti, ti−1) = (iN, jE). In this case the elements ti and ti−1 are not comparable if and only if
i > j, which corresponds to the case where there are moreN steps than E steps in the lattice path
associated to the preamble (t1, t2, . . . , ti).
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We can summarize the three cases above in terms of Dyck paths as we can always switch consecutive steps
EN and we can switch consecutive stepsNE only when there are a larger number ofN steps than E steps
before in the path, that is, only whenwe get a valid Dyck path. If we recall the construction ofToggn−2 in
Section 2.3.2, the adjacency of paths is given precisely in those cases. Hence the dual graph of this TRPS
triangulation is the toggle graph Toggn−2, see Figure 4.12 for an example.
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Figure 4.12: The toggle graph Togg3 obtained from linear extensions of PCar5
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Amathematician is a device for turning coffee
into theorems.

Alfréd Rényi

5
Conclusions and future works

In this thesis we have provided new ways of how to interpreting some triangulations of the Caracol flow
polytopes, using combinatorial objects. This kind of procedures gives a tool to encode and totally char-
acterize the triangulations of this family of polytopes.
Since we start working from conjectures made using computational aids, we have given a new useful tool
to visualize and conjecturewhat canhappenwith the triangulations of flowpolytopes and their respective
dual graphs. Thefirsts runswemadeof the codeswere tofind something interesting about thedual graphs
of the TRPS triangulations, but we avoided the condition of inheritance of the framing. With random
orderings as framing we also can seen that some dual graphs of these triangulations have crosses, which
can implies that the triangulation made in that way is not a regular triangulation. It is then for readers
interested in this type of objects to study what happens when the framing is not inherited, and what can
happens if the triangulation is not obtained by a backward total reduction but a total reduction made in
some different order of iteration (maybe randomly).
Other interesting problem for future researches is to consider the graphs Cark,ln instead Carn and study
the dual graphs of their flow polytopes, for net flow (1, 0, . . . , 0). The family Cark,ln is known as (k, l)-
Caracol graphs, and were defined by Sánchez [23] as the Caracol graph removing the k edges (1, s) for
s = n− (k− 1), . . . , n and the l edges (s, n+ 1) for s = 2, . . . , l+ 1whose normalized volume is given
in terms of counting Dyck paths.
Finally, the problem in which many mathematicians are working on, calculating in a combinatorial way
the volume of the CRY polytope, probably can be studied from the dual graph of some of its triangu-
lations. It is possible that the dual graph of TRPS triangulations of that polytope can be obtained from
kind of products of the dual graphs that were studied in this work, but it is necessary to find useful com-
binatorial objects that allows us it.
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A
Code

The following code was made for the free open-source mathematics software system Sagemath and
were used to find and visualize examples of flow polytopes and its triangulations. We hope that they can
be used for new mathematical researches.

There is a folder inGoogleDrive to get access to the scripts for the interested reader. The versions showed
here are only commented scripts for illustration purposes but the downloadable ones have their own
docstring documentations.
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Listing A.1: caracol_graph
1 def caracol_graph(n, labels=None):
2 #defines the number of vertices and the graph object
3 n = n+1
4 G = DiGraph(multiedges=True)
5 G.add_edge(0,1) #the first edge
6 #creates the edges between inner vertices, the edges from 1 to inner vertices and the edges

from inner vertices to n+1
7 for i in range(1,n-2):
8 G.add_edges([[i,i+1],[0,i+1],[i,n-1]])
9 G.add_edge(n-2,n-1) #the last edge
10 #verifies if labes are not given or if the given ones have the correct cardinal
11 if labels == None or len(labels) != 3*n-7:
12 #if no valid labels were given creates the names of the variables/edges, these edges are

named according to their corresponding vertices. 'X_i_j' correspond to an edge from
vertex i to vertex j

13 variable_names = ['X%i_%i'%(edge[0]+1,edge[1]+1) for edge in G.edges()]
14 reverse_variable_names = copy(variable_names)
15 reverse_variable_names.reverse()
16 #PolynomialRing object in the rational numbers, with variables names in the list '

variable_names'
17 ring = PolynomialRing(QQ,reverse_variable_names)
18 ring.inject_variables() #this create the variables as script objects
19 #now polynomial variables are assigned as labels to every edge in the graph
20 for i,j,l in G.edges():
21 G.set_edge_label(i,j,(eval(variable_names[G.edges().index((i,j,l))]),eval(

variable_names[G.edges().index((i,j,l))])))
22 #shows a message telling that the graph object are succesfully created
23 print str(n-1)+"-Caracol graph with edge labels in a polynomial ring."
24 return G,ring #returns a tuple with the graph and the polynomial ring
25 #if labels with correct cardinal are given, assingn these labels to the edges in the given

order
26 for i,j,l in G.edges():
27 #the order of the labels are not related with the names of the edges
28 G.set_edge_label(i,j,labels[G.edges().index((i,j,l))])
29 #shows a message telling that the graph object are succesfully created
30 print "Edge labeled "+str(n-1)+"-Caracol graph."
31 return G #returns only the graph with the given labels

This function constructs theCaracol flowgraph for any positive integern. Since the flows are represented
by polynomials, one can specify the names of the variables.
>>> Car_5 = caracol_graph(5)
Defining X5_6, X4_6, X4_5, X3_6, X3_4, X2_6, X2_3, X1_5, X1_4, X1_3, X1_2
5-Caracol graph with edge labels in a polynomial ring.
>>> Car_5[0].plot(layout='circular')
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Listing A.2: flowgraph_polytope
1 def flowgraph_polytope(graph, net_flow_vector=None, ring=None):
2 #keeps the edges and vertices into lists
3 edges = graph.edges()
4 vertices = graph.vertices()
5 #if 'ring' is not given, one PolynomialRing is created according to 'graph'
6 if ring == None:
7 ring = PolynomialRing(QQ,['X%i_%i'%(edge[0],edge[1]) for edge in graph.edges()])
8 ring.inject_variables()
9 #if 'net_flow_vector' is not given, a 'default' list is created
10 if net_flow_vector == None:
11 net_flow_vector = [0 for i in range(len(vertices))] #0 for the entries
12 net_flow_vector[0] = 1 #1 in the first entry
13 net_flow_vector[-1] = -1 #-1 in the last entry
14 #uses the PolynomialRing variable names for find their coefficients
15 variable_names = ring.variable_names()
16 #the inequalities that describes the polytope are given as lists of coefficients where the

first entry is the constant term (0) and the other are the coefficients of the label (
polynomial) of every edge of the graph

17 inequalities = [[0]+[edge[2][1].monomial_coefficient(eval(var)) for var in variable_names]
for edge in edges]

18 #creates an empty list for the equations which depends of the edges
19 equations = []
20 #each vertex have an associated equation depending of its edges
21 for vertex in vertices[:-1]:
22 #an initial zero polynomial in which saves the corresponding to edges, remember that the

second entry of an edge is the label (a polynomial)
23 polynomial = 0
24 #first adding the polynomials of the incoming edges of vertex 'v'
25 for incoming in graph.incoming_edges(vertex):
26 polynomial = polynomial+incoming[2][1]
27 #then subtracting the polynomials of the outgoing edges of vertex 'v'
28 for outgoing in graph.outgoing_edges(vertex):
29 polynomial = polynomial-outgoing[2][1]
30 #save the polynomial only if there are any information
31 if polynomial != 0:
32 #the net_flow_list at 'v' is the constant term of the polynomial
33 equations.append([net_flow_vector[vertex]]+[polynomial.monomial_coefficient(eval(var)

) for var in variable_names])
34 #the function returns the polytope corresponding to the generated equalities and equations
35 return Polyhedron(eqns=equations, ieqs=inequalities)

This function constructs the flow polytope associated to a flow graph, a net flow vector and a polynomial
ring that is the parent of the labels of the edges of the graph.

Listing A.3: simple_projection
1 def simple_projection(P):
2 #Returns the projection of a polytope P into a three dimensional space.
3 proj_matrix = matrix.zero(3,P.ambient_dim())
4 for i in range(0,3):
5 proj_matrix[i,i] = 1
6 vert = proj_matrix*P.vertices_matrix()
7 return Polyhedron(vertices=vert.transpose())

This function constructs a three dimensional projection of the polytope given.
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>>> net_flow_5 = [1,0,0,0,0,-1]
>>> F_car_5 = flowgraph_polytope(Car_5[0],net_flow_5,Car_5[1])
>>> proj_F_car_5 = simple_projection(F_car_5)
>>> proj_F_car_5.plot()

Listing A.4: flowgraph_vertex_reduction
1 def flowgraph_vertex_reduction(graph, vertex, net_flow_vertex, polynomial, random=False):
2 #defines an empty list in which the result of the reduction will be stored
3 reduction = []
4 #list of the edges at 'vertex' for use in the method
5 incoming_edges = graph.incoming_edges(vertex)
6 outgoing_edges = graph.outgoing_edges(vertex)
7 #a flag to check if the set of incoming edges was ordered
8 incoming_ordered = 0
9 while incoming_ordered == 0:
10 incoming_ordered = 1
11 for edge in range(len(incoming_edges)-1):
12 #insertion sort, reversing the ordering
13 if incoming_edges[edge][2][0] < incoming_edges[edge+1][2][0]:
14 temp = incoming_edges[edge]
15 incoming_edges[edge] = incoming_edges[edge+1]
16 incoming_edges[edge+1] = temp
17 incoming_ordered = 0
18 break
19 #a flag to check if the set of outgoing edges was ordered
20 outgoing_ordered = 0
21 while outgoing_ordered == 0:
22 outgoing_ordered = 1
23 for edge in range(len(outgoing_edges)-1):
24 #insertion sort, reversing the ordering
25 if outgoing_edges[edge][2][0] < outgoing_edges[edge+1][2][0]:
26 temp = outgoing_edges[edge]
27 outgoing_edges[edge] = outgoing_edges[edge+1]
28 outgoing_edges[edge+1] = temp
29 outgoing_ordered = 0
30 break
31 #verifies if 'random' is setted as True, if it is True make a shuffle in the edges
32 if random:
33 shuffle(outgoing_edges)
34 #adds an edge to keep the net flow at 'vertex' for use it in the algorithm
35 incoming_edges.append((vertex,vertex,(net_flow_vertex,net_flow_vertex)))
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36 incoming = len(incoming_edges) #number of incoming edges
37 outgoing = len(outgoing_edges) #number of outgoing edges
38 #it will runs over all the integer compositions of the number of outgoing edges less 1 on the

number of incoming edges parts
39 for composition in list(IntegerVectors(outgoing-1,incoming)):
40 #creates an auxiliar graph for keepeng the original at every composition
41 graph_aux = graph.copy()
42 graph_aux.delete_vertex(vertex) #to remove all the edges of 'vertex'
43 graph_aux.add_vertex(vertex) #and create the same vertex with no edges
44 #the polynomial label of the new graphs depending of the composition
45 new_polynomial = polynomial+sum([incoming_edges[a][2][1]*composition[a] for a in range(

incoming)])
46 Polynom = 0 #initializes the polynomial used for the labels of the edges
47 pos_out = 0 #the position on the list of outgoing edges
48 #it will runs over all the indices of the entries of the composition
49 for pos_in in range(len(composition)):
50 #verify if there are only an edge on that vertex in bipartite tree
51 if composition[pos_in] == 0:
52 #verifies if it is the last element of the incoming edges
53 if pos_in == len(composition)-1:
54 #makes the polynomial and add the new edge to the graph
55 Polynom = outgoing_edges[pos_out][2][1]-Polynom
56 graph_aux.add_edge(incoming_edges[pos_in][0],outgoing_edges[pos_out][1],(

incoming_edges[pos_in][2][0]+outgoing_edges[pos_out][2][0],Polynom))
57 else:
58 #makes the polynomial and add the new edge to the graph
59 graph_aux.add_edge(incoming_edges[pos_in][0],outgoing_edges[pos_out][1],(

incoming_edges[pos_in][2][0]+outgoing_edges[pos_out][2][0],incoming_edges
[pos_in][2][1]))

60 Polynom = Polynom+incoming_edges[pos_in][2][1]
61 else:
62 #makes the polynomial and add the new edge to the graph
63 Polynom = outgoing_edges[pos_out][2][1]-Polynom
64 graph_aux.add_edge(incoming_edges[pos_in][0],outgoing_edges[pos_out][1],(

incoming_edges[pos_in][2][0]+outgoing_edges[pos_out][2][0],Polynom))
65 pos_out = pos_out+1 #passes to the next outgoing edge index
66 #initializes the number of tree edges at that vertex
67 max_tree_edges=1
68 while max_tree_edges < composition[pos_in]:
69 #makes the polynomial and add the new edge to the graph
70 graph_aux.add_edge(incoming_edges[pos_in][0],outgoing_edges[pos_out][1],(

incoming_edges[pos_in][2][0]+outgoing_edges[pos_out][2][0],outgoing_edges
[pos_out][2][1]))

71 Polynom = Polynom+outgoing_edges[pos_out][2][1]
72 pos_out = pos_out+1 #passes to the next outgoing edge index
73 max_tree_edges = max_tree_edges+1 #passes to the next edge
74 #verifies if it is the last element of the incoming edges
75 if pos_in == len(composition)-1:
76 #makes the polynomial and add the new edge to the graph
77 graph_aux.add_edge(incoming_edges[pos_in][0],outgoing_edges[pos_out][1],(

incoming_edges[pos_in][2][0]+outgoing_edges[pos_out][2][0],outgoing_edges
[pos_out][2][1]))

78 else:
79 Polynom = incoming_edges[pos_in][2][1]-Polynom
80 graph_aux.add_edge(incoming_edges[pos_in][0],outgoing_edges[pos_out][1],(

incoming_edges[pos_in][2][0]+outgoing_edges[pos_out][2][0],Polynom))
81 #saves the new graph and the corresponding label polynomial in a list
82 reduction.append([graph_aux,new_polynomial])
83 #returns the list of all the new graphs and its polynomials
84 return reduction

This function applies a reduction at one specified inner vertex of the flow graph, following the MMS
algorithm. The order is inherited from the polynomial order given at the edges. One can change the
method to give a particular ordering (framing) and obtain different triangulations.

29



Listing A.5: flowgraph_backward_total_reduction
1 def flowgraph_backward_total_reduction(graph, net_flow_vector, random=False):
2 #initializes the list of the triangulation with "graph" in there for the recursive process
3 reduction = [[graph,0]]
4 #list the inner vertices for which will be applyed the vertex reduction
5 vertices = graph.vertices()[1:-1]
6 #reverses the list of vertices to allow the application the 'backward total reduction'
7 vertices.reverse()
8 #runs over every vertex in the graph for make the corresponding reduction
9 for vertex in vertices:
10 #the reduction will be applied in the graphs in the current iteration
11 for G in reduction:
12 #to the reduction we append the result of the vertex reduction
13 reduction = reduction+flowgraph_vertex_reduction(G[0],vertex,net_flow_vector[vertex],

G[1],random)
14 #and we delete the first one, that is the initial graph
15 reduction.pop(0)
16 #after the reduction in every vertex returns a list with the simplex graphs
17 return reduction

This function generates a list of the flow graphs obtained after applied a backward total reduction accord-
ing to theMMS algorithm, which form a triangulation of the flow polytope associated to the original
flow graph.

Listing A.6: flowgraph_dual
1 def flowgraph_dual(graph, net_flow_vector, ring, random=False):
2 #calculates the dimension of the flow polytope associated to 'graph'
3 dimension = flowgraph_polytope(graph,net_flow_vector,ring).dim()
4 #list of flow graphs obtained after applying the MMS algorithm to 'graph'
5 graphs = flowgraph_backward_total_reduction(graph,net_flow_vector,random)
6 #initializes the lists of the full dimensional simplices(polytopes) and their corresponding

graphs
7 full_dimensional_graphs , full_dimensional_polytopes , volume = [], [], 0
8 for G in graphs:
9 polytope = flowgraph_polytope(G[0],net_flow_vector,ring)
10 if polytope.dim() == dimension:
11 #saves in the lists of the simplices and graphs if the actual simplex have the same

dimension of the initial polytope
12 full_dimensional_graphs.append(G)
13 full_dimensional_polytopes.append(polytope)
14 volume = volume+1
15 #initializes the dual graph as a simple undirected graph
16 dual_graph = Graph()
17 #runs over all the polytopes twice for verify the pairwise adjacency
18 for polytope1 in range(volume):
19 for polytope2 in range(volume):
20 if polytope1 != polytope2:
21 #the polytopes are adjacent if their intersection have the dimension of the

original polytope less 1
22 if full_dimensional_polytopes[polytope1].intersection(full_dimensional_polytopes[

polytope2]).dim()==dimension -1:
23 #and if them are adjacent, creates an edge in the dual graph
24 dual_graph.add_edge(full_dimensional_graphs[polytope1][1],

full_dimensional_graphs[polytope2][1])
25 #the function returns the dual graph of the TRPS triangulation
26 return dual_graph

This function constructs the dual graph associated to the TRPS triangulation obtained after apply the
MMS algorithm.
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>>> dual_F_car_5 = flowgraph_dual(Car_5[0],net_flow_5,Car_5[1])
>>> dual_F_car_5.plot(vertex_labels=False)
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